Research Centre for Medical Genetics
115522, Moscow,
Moskvorechye st., 1
Reception
+7 (495) 111-03-03
Mo-Fr: 9:00 - 17:00
Рус

Head of the Laboratory

Svetlana A. Smirnikhina
Тел:
+7 (499) 324-35-79
Email:
smirnikhinas@gmail.com
More

Contacts

115522, Moscow, Moskvorechye str., 1, 3rd floor (rooms 306, 308-312, 314, 316)

Phones: +7 (499) 324-3579, +7 (499) 612-9989

Scientific personnel

  • Konstantin S. Kochergin-Nikitsky
    Senior Researcher
    PhD in Biology
  • Alexander V. Lavrov
    leading research scientist
    PhD in Medical Sciences
  • Irina O. Panchuk
    Researcher
  • Olga A. Levchenko
    Researcher
  • Milyausha I. Zainitdinova
    Researcher
  • Arina A. Anuchina
    Researcher, Postgraduate student
  • Yana S. Slesarenko
    Researcher
  • Ekaterina V. Kondrateva
    Researcher
  • Lyubava L. Belova
    Academic advisor
  • Anna G. Demchenko
    Researcher, Postgraduate student
  • Alisa V. Ivanova
    Junior Researcher
  • Elena V. Vasileva
    Research Assistant
  • Irina O. Petrova
    Researcher
    PhD in Biology
  • Kirill D. Ustinov
    Research Assistant
  • Matvei I. Yasinovsky
    Research Assistant

SELECTED PUBLICATIONS

  1. Voldgorn YI, Adilgereeva EP, Nekrasov ED, Lavrov AV. Cultivation and Differentiation Change Nuclear Localization of Chromosome Centromeres in Human Mesenchymal Stem Cells. PLoS ONE, 2015, 10(3): e0118350. doi: 10.1371/journal.pone.0118350 http://dx.plos.org/10.1371/journal.pone.0118350
  2. Lavrov A.V., Chelysheva E.Y., Smirnikhina S.A., Shukhov O.A., Turkina A.G., Adilgereeva E.P., Kutsev S.I. Frequent variations in cancer-related genes may play prognostic role in treatment of patients with chronic myeloid leukemia. BMC Genetics, 2016, 17(Suppl 1):14, DOI: 10.1186/s12863-015-0308-7 http://bmcgenet.biomedcentral.com/articles/10.1186/s12863-015-0308-7
  3. Smirnikhina S.A., Lavrov A.V., Chelysheva E.Yu., Adilgereeva E.P., Shukhov O.A., Turkina A.G., Kutsev S.I. Whole-exome sequencing reveals potential molecular predictors of relapse after discontinuation of the targeted therapy in CML. Leukemia and Lymphoma, 2016, DOI: 10.3109/10428194.2015.1132420 http://www.tandfonline.com/doi/full/10.3109/10428194.2015.1132420
  4. Lavrov AV, Ustaeva OA, Adilgereeva EP, Smirnikhina SA, Chelysheva EY, Shukhov OA, Shatokhin YV, Mordanov SV, Turkina AG, Kutsev SI. Copy number variation analysis in cytochromes and glutathione S-transferases may predict efficacy of tyrosine kinase inhibitors in chronic myeloid leukemia. PLoS ONE, 2017 12(9):e0182901. https://doi.org/10.1371/journal.pone.0182901. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182901
  5. Smirnikhina SA, Chelysheva EY, Lavrov AV, Kochergin-Nikitsky KS, Mozgovoy IV, Adilgereeva EP, Shukhov OA, Petrova AN, Bykova AV, Abdullaev AO, Turkina AG, Kutsev SI. Genetic markers of stable molecular remission in chronic myeloid leukemia after targeted therapy discontinuation. Leuk Lymphoma. 2018 Feb 9:1-4. doi: 10.1080/10428194.2018.1434880. https://www.tandfonline.com/doi/abs/10.1080/10428194.2018.1434880?journalCode=ilal20
  6. Yakushina V.D., Lerner L.V., Lavrov A.V. Gene fusions in thyroid cancer. Thyroid. February 2018, 28(2): 158-167. https://doi.org/10.1089/thy.2017.0318
  7. Smirnikhina SA, Anuchina AA., Lavrov AV. Ways of improving precise knock-in by genome editing technologies. Human Genetics, 2018, Hum Genet. 2019 Jan;138(1):1-19. doi: 10.1007/s00439-018-1953-5. https://link.springer.com/article/10.1007%2Fs00439-018-1953-5
  8. Lavrov AV, Chelysheva EYu, Adilgereeva EP, Shukhov OA, Smirnikhina SA, Kochergin-Nikitsky KS, Yakushina VD, Tsaur GA, Mordanov SV, Turkina AG, Kutsev SI. Exome, transcriptome and miRNA analysis don’t reveal any molecular markers of TKI efficacy in primary CML patients. BMC Medical Genomics, 2019, doi: 10.1186/s12920-019-0481-z. https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-019-0481-z
  9. Hsieh TC, Mensah MA, Pantel JT, Aguilar D, Bar O, Bayat A, Becerra-Solano L, Bentzen HB, Biskup S, Borisov O, Braaten O, Ciaccio C, Coutelier M, Cremer K, Danyel M, Daschkey S, Eden HD, Devriendt K, Wilson S, Douzgou S, Đukić D, Ehmke N, Fauth C, Fischer-Zirnsak B, Fleischer N, Gabriel H, Graul-Neumann L, Gripp KW, Gurovich Y, Gusina A, Haddad N, Hajjir N, Hanani Y, Hertzberg J, Hoertnagel K, Howell J, Ivanovski I, Kaindl A, Kamphans T, Kamphausen S, Karimov C, Kathom H, Keryan A, Knaus A, Köhler S, Kornak U, Lavrov A, Leitheiser M, Lyon GJ, Mangold E, Reina PM, Carrascal AM, Mitter D, Herrador LM, Nadav G, Nöthen M, Orrico A, Ott CE, Park K, Peterlin B, Pölsler L, Raas-Rothschild A, Randolph L, Revencu N, Fagerberg CR, Robinson PN, Rosnev S, Rudnik S, Rudolf G, Schatz U, Schossig A, Schubach M, Shanoon O, Sheridan E, Smirin-Yosef P, Spielmann M, Suk EK, Sznajer Y, Thiel CT, Thiel G, Verloes A, Vrecar I, Wahl D, Weber I, Winter K, Wiśniewska M, Wollnik B, Yeung MW, Zhao M, Zhu N, Zschocke J, Mundlos S, Horn D, Krawitz PM. PEDIA: prioritization of exome data by image analysis. Genet Med. 2019 Jun 5. doi: 10.1038/s41436-019-0566-2. [Epub ahead of print] https://www.nature.com/articles/s41436-019-0566-2
  10. Anuchina A.A., Lavrov A.V., Smirnikhina S.A. TIRR: a potential front runner in HDR race − hypotheses and perspectives. Molecular Biology Reports, 2020. https://link.springer.com/article/10.1007/s11033-020-05285-x
  11. Lavrov AV, Varenikov GG, Skoblov MYu. Genome scale analysis of pathogenic variants targetable for single base editing. BMC Medical Genomics. DOI: 10.1186/s12920-020-00735-8. https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-020-00735-8
  12. Kondrateva E, Adilgereeva E, Amelina E, Tabakov V, Demchenko A, Ustinov K, Yasinovsky M, Voronina E, Lavrov A, Smirnikhina S. Generation of induced pluripotent stem cell line (RCMGi001-A) from human skin fibroblasts of a cystic fibrosis patient with p.F508del mutation. Stem Cell Research, 2020, Volume 48, October 2020, 101933, doi: 10.1016/j.scr.2020.101933 https://www.sciencedirect.com/science/article/pii/S1873506120302348
  13. Kondrateva E., Demchenko A., Lavrov A., Smirnikhina S. An overview of currently available molecular Cas-tools for precise genome modification. Gene, 2020, 145225, 10.1016/j.gene.2020.145225. https://www.sciencedirect.com/science/article/pii/S0378111920308945
  14. Smirnikhina SA. Prime Editing: Making the Move to Prime Time. The CRISPR Journal, 2020, Vol 3, N 5, p. 319-321. DOI: 10.1089/crispr.2020.29105.sas. https://www.liebertpub.com/doi/full/10.1089/crispr.2020.29105.sas
  15. Smirnikhina SA, Kondrateva EV, Adilgereeva EP, Anuchina AA, Zaynitdinova MI, Slesarenko YaS., Ershova AS, Ustinov KD, Yasinovsky MI, Amelina EL, Voronina ES, Yakushina VD, Tabakov VYu, Lavrov AV. P.F508del editing in cells from cystic fibrosis patients. PLoS ONE 15(11): e0242094. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242094

About the Laboratory

The Laboratory of Genome Editing was organized on January 1, 2019 as a result of the separation of the genome editing group from the Laboratory of Mutagenesis.

The laboratory's efforts are focused on the topic of genome editing, including fundamental research for increasing the level of homologous recombination in CRISPR/Cas9 method, as well as applied research to develop treatment of hereditary monogenic diseases. The following works are carried out in the laboratory: 1) editing the most frequent mutation F508del in CFTR gene for the treatment of cystic fibrosis; 2) editing mutations in the DES gene for the treatment of hereditary cardiomyopathies; 3) single nucleotide editing of mutations in the KERA gene for the treatment of autosomal recessive Cornea plana disease.

Cystic fibrosis is one of the most common monogenic diseases. The electrolyte composition in the extracellular medium is disturbed due to mutations in the gene of the channel protein for chlorine ions (CFTR), so results to disruption of many organs. Pulmonary symptoms are dominant clinical features. Lungs’ pathology determines the prognosis and survival of the patients. Etiology-based therapy of this disease does not exist. Developed technologies of highly efficient target genome editing allow us to hope that such therapy will be worked out in the near future for many hereditary diseases. Using the technology of targeted nucleases CRISPR/Cas9, we are developing a method for correcting the most frequent mutation p.F508del in cystic fibrosis.